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The solution of problems concerning the state of stress of multiconnected trans- 
tropic plates of arbitrary thickness under symmetric and skew-symmetric load- 

ings is constructed in a three-dimensional formulation. As in [l, 21, the semi- 

inverse method of Vorovich (see [5 - 81, etc. ) is used to obtain homogeneous 

solutions of the Lure-Lekhnitskii type [3, 41. The state of stress of transtropic 
plates is determined by the method of reducing the problem to the solution of 

functional systems, described in [9 - 121 in application to isotropic thick plates. 

Analogous problems for simply-connected plates have been analyzed by an 

asymptotic method in [1, 21. 

1. Let us consider an elastic homogeneous layer of thickness 2h weakened by arbit- 

rarily arranged circular cylindrical cavities whosegenerators are normal to the flat faces. 
Let us consider the layer to experience small deformations under the effect of external 

forces applied to the side surfaces of the cavities ~j (j = 1, 2, . . . , S). The struc- 

ture of the body material is such that all the directions in planes parallel to the middle 
plane are equivalent in the sense of the elastic properties. We call such materials trans- 

tropic [13]. Among them, for example, are “star plastics”, DSP-G wood plastics, F-60 
veneer [13], cadmium, magnesium, zinc crystals [14, 151, etc. 

The equations of the generalized Hooke’s law for such materials are [I61 

Let us introduce the dimensionless quantities 

Ui = Uk/R (6 i = E, v, 5; k, I= X, FJ, Z) 

where the variables 5, q are related to the middle plane of the plate,and R is the 
radius of one of the cavities. Then the generalized Hooke’s law equation can be written 
in the following form (the prime denotes the derivative with respect to 5): 

046 = All4u~ + A,,&+ + J.-lA,,uy', 0<11 = A,, (iQ.4~ + d,u,) 

G nn = A&&e + All&& + A-1&q', oEr. = Aa4(dlzq + A-1~~') 
(1.1) 

w = Al, (4+ + Q4l) + A-1-433uc', Q = A,, (dg.q + A-'u,') 
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4, = PO-l (1 - vav,), Al, = PO=’ (v + %Vz), po = 1 - 
v - %v,, so2 = G I G, 

P3 = 2wz i- so-“?, 112 = +I(1 - v),vz ivz, p1 = f&)-l (I + v), 
Y.L = vpc I E,, t”- = (1 - 2vp 

The strain energy should be positive, hence, the constraints [15] 

A,, > 0, A,, > I A12 1, (A,, + A,,) A.22 > 2&2 

are imposed on the coefficients AQ . 
Let us substitute (1.1) into the e~ilibrium equation. Con~quently, we obtain the elas- 

ticity theory equation for a transtropic medium in terms of displacements (0s = al2 $ 

ass is the two-dimensional Laplace operator) 

(&)-au-,” + D2uc + p.,d, (dluc + &I) + .li-%,~I% = o (1.2) 

(hrJ%Q + Db, + Qp (a& + d,hJ + ma4 = 0 

?ipq,&~” + s,-w*u~ + ?b-$83 (a& + f%%‘) = 0 

Now, the boundary value problem can be formulated thus, Find the solution of the sys- 

tem (1.2) satisfying the following boundary conditions : 

og = CTgr = qr, = 0, C=rfrl (1.3) 

otr = p’ (Oj, ZJ, cI,s = P*j, or< = & on % (1.4) 

Here rj, Bj, 5 is a cylindrical coordinate system coupled to the center of the j- th 

cavity, Pk7 (k = r, 0, 5) are given external loads which can always be decomposed 
into symmetric and skew-symmetric components. As in [3], in the tension-compression 
problem P,.‘, Pa’ are even but PC’ is an even function of 5 and, conversely, in the 

bending problem P,‘, P$ are odd and pGj is even. 
Let us construct the solution of the problems mentioned as a sum of biharmonic, vortex, 

and potential states of stress by using the method of homogeneous solutions [l - 3, 5, 6J 

ui = UiB + UiR + UiP, Ciij = GijB f GijR f 6ijP (it i = EP n> 5) (1*5) 

2, Let us seek the vortex solution in the form 

UcR 6 11, 5) = p (5) a,B (E, q), %R = --pd,B, UcR = 0 (2-l] 

It is assumed here that the displacements UC, un are projections of the rotor of some 
function on the E, TJ axes [l, 2, 5, 61. 

From the system (1.2) we have 

a, (a#--as,-2p”B + pm?) = 0 (i = 1, 2) (2.2) 

For (2.1) to satisfy the system (1.2), it is sufficient to require that the expression in 
parentheses in (2.2) be zero. In conformity with the method of separation of variables, 
this requirement can be written thus (6 is the separation constant): 
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p” (5) + &12P (5) = 0 (2.3) 

DV3 (E, 91) - (6 i J-J2 B (8, rl) = 0 (2.4) 

Let us require compliance with the boundary conditions on the flat faces (1.3). Con- 

sequently*we Obtain p' (& 1) ait3 (E, q) = 0 (i = 1, 2) 

But d$ + 0 (in the opposite case, we would have a trivial solution), hence 

Therefore, in connection 

ville problem (2.3),(2.5). 
Since the displacements 

functions of the variable 5 

(2.5) can be written as 

p’ (& I) = 0 (2.5) 

with finding the function p (0 we arrive at the Sturm-Liou- 

r&, u,, are even in the tension-compression problem, but odd 
in the bending problem, the solution of the problem (2.3), 

Pbf (5) = bk+ CO9 6k+soS,1 pk- (5) = bk- sin dk- soE; (2.6) 
a/&+ = 6+ = kdSg, 6k-=6- = (2k - 1) n/2&), k=fl,=f=2,... 

(sin 6%~ = 0, cosb-s* = 0, g* # 0) 

Here b,* are arbitrary constants and 6,* are the roots of the equations in paren- 

theses. The solutions of (2.4) correspond to these same values of 6,* 

It follows from (2.4) and (2.6) that the functions Bk (c, 9) are even and pk* ( 5) 
can be selected because of the corresponding selection of the constants bkf. Hence, 

summation over 6,* ( 0 does not yield new solutions,and we can finally write for 

both problems b) 

=ER (t*% f) = 5 ~k(~)~~Bk~~,~)~ %R = - 2 p&$k, um = 0 c2*?) 
k-1 k-1 

Substituting (2.7) into (1. l), we obtain 
CQ Q) 

%ER = - og*n = 2 Pk%%Bkv ~QIR = -+ 2 pk (&* - 31’) Bk (2.8) 
k=l k-1 

%w = - i iak(c> %&k, a,cR = 2 gka,Bk, acm = 0 
k=l k=l 

The notation in (2.7) and (2.8) is 

pk+ (5) = 2hs,, oos 6k*a& pk- (c) = F sin &-%& (2.9) 

&+ (5) = Sk+ sin 6k+a,& gk (g) = - cos &-as~ 

In the isotropic case G, = G , and therefore, so = 1. In this case (2.7) - (2.9) agree 

with those presented in [S]. 

3, Let us seek the potential solution in the form (5, 63 

%P (E, rlIt 5) = n (s) d& (E, rl), WlP = n&C, u;P = 4 (0 c (3.1) 

The functions n (& 4 (S), c (E, rl) are determined, as in Sect. 2, by satisfying 

( 1.2) and the corniitmns (1.3). 
From the system (1.2) we obtain 
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di [(&Pn” (5) + (I + pJ D2Cn (5) + h-‘p3q’ (5) Cl = 0 (3.2) 

A-2p2q” (5) C + (so-2q + A-‘pgz’) D2C = 0 (i = I,21 

The variables separate in (3. ‘2) if we set 

D2C = (y I A)2C (3.3) 
Taking account of the dependences (3.2) and (3.3), we can satis@ the system (1.2) by 

requiring compliance with the following conditions 

(3.4) 

We seek the solution of the system (3.4) by the Euler method. Its characteristic equa- 

tion is 
S4 + 2b&S2 + bsra = 0, bl = e, b+!% II---2 (3.5) 

z 

To write the general solution of the system (3.4), let us consider the following possible 
cases: 

1”. If b, > 0 and b12 - b, # 0, then 

s 11 2 = +- iys,, SS, 4 = t iys, (3.6) 

n+ (%> = H,+ cos y+s& + H,+ cosy+%L 
n- (5) = HI- sin ~-srC. -I- Hz- sin y-s25 
q+ (5) = Q1+ sin y+s15 + Q2+ sin y+%C, 
q- (5) = Q1- cos y-s1 5 + Qz- cos y-s2 5 

Hence 

s1.2 = 1/b,+I/b,* - b2 - 

are real and different if b12 - b, > 0 and complex conjugate if b,s < b,. 
2’. If b, > 0 and br2 = b,, then 

S 192 = LY~,~ = _t iys,, s1 = 1/T;1 (3.7) 

nf (5) = HI+ cos y+s, 5 + H,+c sin y+sl 5, n’ = HI- sin y’s1 5-k 
H,- 5 cosy-s, C 

q+ (1;) = Q1+ siny-s,‘c + Q2+C cosy+slL q- = Q1- cosy-slC t 

Q2-5 sin y-s15 
In particular, if Y, = vs = V and G, = G, then s,,s = s, = b, = 1, i.e. the solu- 

tion for an isotropic plate is obiained from this case. 

3” - If & < 0 and b12 - b, # 0, then S1, ?. = -t_ ysI, S,, 4 == & pa. Hence 

s1,2 = ~jbkkl/b,a 

when b,s ( b, and 

s1,2 = l/lb11 =ti ft/bs 

when b12 < bz. The expression for nf (5) and @ ( j) are obtained from (3.6) by re- 
placing the circular by corresponding hyperbolic functions. 

4”. If bl < 0 and br2 = b 2, then S1, 2 = S3, 4 = -+ ysl, Sl = V-ET 

The expressions for nf (5) and q* (5) are obtained from (3.7) by using the same sub- 
stitution as in case 3”. 
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The constants B,r$, #&$ (m = 1, 2) in (3.Q (3.7) are expressed in terms of each 
other. For instance 

Qm+ I= Am+Hm+t Q,,- = -Am-H,-, (3.3) 

A,$ = (yf / A) s,,$& (1 - so2P$m2)- 

Analogous relations are established in other cases also, 

We determine the constants H,* from the boundary conditions on the flat faces 

(1.3). For example, for case 1” we obtain 

a, cos y+s,H,+ + us cos y+ss&Ca+ = 0, a, sin y-s&f,- + 
+ a3 sin y-s2H,- k 0 

(3.9) 

d,s,sin y+s,H,+ + d,s, sin y+s2Ha+ = 0, c&s, cos y-slH,- + 
+ d,s, cos y-s,H,- = 0 

a, = (1 + Fs,2) (1 - p&my-‘, d, = 2V~~~S~~Q,~ 

For a non-trivial solution of the system (3.9) to exist it is necessary that their deter- 

minant be zero. Hence, an equation to determine y follows, which can be written as[4] 

(sr + s,) sin (sl - Ss) y* 2 (SI - $2) sin+ (81 + S$ “J* = 0 (3.10) 

Transcendental equations determine the eigenvalues of the appropriate homogeneous 
problems for the potential state of stress (parameters yP* 1. The eigenfunctions n,&( 5) 

and qP* (S), as well as the functions C, (g, q) determined from (3.3) correspond to 
these eigenvalues. 

Equations (1.2) and conditions (1.3) will be satisfied when the constants @ in(3.6) 
remain arbitrary, 

According to (3.3), the functions C,* (g, q) are even in Yp*. Hence,the constants 

GP are selected so that the displacements would be even in ‘t’p*, which permits con- 

sideration of just those roots of (3.10) whose real part is greater than zero. We take the 
constants mentioned as &, =2 cos yP+s2, W;, = sin yP-sa. Then 

np+ (5) = cos yF+s3 cos yP+S15 - s3 cos y*+s, cos yp+s25 

s3 = a, I a2 
(3.11) 

Qp+ ( 5) = St, COS yPyp’ S2 sin yP+S1 5 - S3p+S3COS yp’S1 sin yp+S3<, 

S +=A m+ (YP) 

ExpressZZrr for lzP- ( Q, QP- ( 5) are derived from those produced by substitution of 
CoS X+ for sin x-,and sin x+ for -COS X-, where xf = s,yp* or xf = s,y,2~. 

The formulas for the displacements can now be written thus: 

+P = i nP(f> f%CP(L rt>, 74~ = i nP~2Cp, UCP = 5 qPCP (3.12) 
P=l P==X P==l 

From Hooke’s law equation we have 

QRP = i [sP (5) + nP (5) haI C,, QP = ii I^P (5) WP 
(3.13) 

p=1 P=l 
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Qmw = 5 bP (5) + np (5) 82T cp, 6,CP = 5 rp (5) a,cp 
p=1 P==l 

%CP = i ~,(Wpt %P = i %4zv%Cp 
p=1 p=1 

SP (5) = (YP / 3L> 2nP (5) Al2 + =%39p' (5) 

TP (6) = '/2%-" (qp -t a-+$'), &I (5) = (yp / 3L)Z A,,n, +h-'qp'A,, 

Let us transform (3.10). If 6, > 0 and b12 > b,, then by using the notation al + 

ss = 52, (sl - s2) / (sl i- s2> = 61 (52 and 61 are real), we obtain 

0 sin Qy* * sin oy% = 0 (3.14) 

If b, > 0 and b12 < bz, then ~1, 2 = at ifJ = 1/b, & ifb, - b12. We 
then have [17] m 

b sin 2~9 -& ush 2&f = 0 (3.15) 

In case 2” the constants H,* are found in an analogous manner but have a more 
awkward structure. The characteristic equation is 

2sly* * sin 2sly* = 0 (3.16) 

As regards the cases 3” and 4”, the results for them are obtained from cases 1’ and 2’ 
by the formal replacement of s 1, s, by is, is,. For example, the equations to determine 

vPf are obtained from (3.14) - (3.16) and are represented thus 

CJI shQy* 2 shoQy* = 0, fkh2qf _t asin Zfly* = 0, 2sly* + 

sh2sly* = 0 

The stresses and displacements are calculated by means of (3.12) and (3.13) in which 
the expressions for np (c) and qp (5) have a structure of the form (3.11). 

4, Let us seek the displacement vector components of the biharmonic solution as 

u& = d, (00 + P% + @a*), & = a, ((D, + 5*@2 -@o*)r (4.1) 

u&r = Cm,1 

z&? = a, (Pu, + S3Ya)9 u&j = d, (cy’, + 5"y3), <B =yo + 52y3 

where aD, = mm (E, q), Y', =% 6 rl) are some arbitrary functions to be deter- 

mined. Requiring that (4.1) satisfy the system (1.2) and conditions (1.3), we obtain 

@s = 2hp*P(D,, cD2 = --h2psD20,, d12@,* = 
-(1 + v)''DeOo, D2D2@,, = 0 

w%* = (I+@-'DW,, !I",, = - +Y, + 2p,?&D2YP1, 

Ys = -?a9pgD2Yl, D2D2Y, = 0 

YIP, = --h2y,D2Y,, pa = V3p~ (2s02 - v2), pus = 'I2 (1 - v)'l, 

&l = l/2 v2 (1 + v)-' 
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Let us introduce a new biharmonic function j’ in place of Q,, by means of the rela- 
tionship 

(I+, = -(F + ‘/sh2~s D’F), D2D2F = 0 

Then the displacements are written thus 

u&j = - 6’1 [F + ha (l/s- 5”) pa D2F - @,-,*I, d1200* = (1 f Y)” D2P (4.2) 

r&s=- 82[F+h2(1/s- ~2)j.q,D~F+Oo*], d22(D,*=-((1+~)-1D’F 

U;B = dl[cF - h2prt3D2F], P = Y1, I.& = - 2hy,<D2F 

U;B = 8% [ 6F - h2pkf;3D2F]t UtB = - f F - hps (vsc2 - 2~“) D’F 

Substituting the displacements (4.2) into (1. I), we obtain the following formulas to 
determine the stresses of the biharmonic state: 

o&B = as2 [F + i2j.&, (‘/, - 5”) D2Fi, c:& = aI2 [F f 

h2p.s (V3 - 5”) D2F] 

6, The solution of the problem posed in Sect. 1 reduces to finding the functions F, 

Bk, C, which will satisfy the system of governing equations 

D2D2F = 0, D2CP = (yP I h)2CP, D2B,, = (6, I kj2 Bk (5.1) 

The total order of the system (5.1) is D * 2+p+k), ( which requires the formulation of 

(2+p+k) boundary conditions on Qj instead of the three conditions (1.4). Hence, 

let us use the ideas of the Bubnov-Galerkin method to match the boundary conditions 
to the governing system. To do this, let us require that the residuals of the boundary 

conditions (1.4) be orthogonal to the complete system of functions {sin &+-so 5, 
cos 6,*s, p} in the segment [ -1, 11. We consequently obtain the system of boundary 
conditions needed to satisfy the conditions on the side surfaces of the cavities. 

We will have on Qj in the tension-compression problem 

Cp (tj) + tjcP’(ti) + $((tj) + '/2hl,j(B0, CD) = '/2f190(tj) (5.2) 

16(h/&O)-2 psm + b,j(Bm, Cp) = f~,m(tj)t 

b, i(Bmy Cd = f2,m(tJ 

.Al,j(B,, C,)=S[2s,h(-l)mL~~jB,+ f$ (sC,,L,(lj+n~,L,nj)C,]Rjdaj 
‘i p=1 
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&, j (Bm, Cp) = - 6m+ (e-1)” L,njBm + i r&pL,njCp (m = 1, 2, . ..) 
P=l 

F = Re [Q(z) + X(Z)], 'Ic, = 2 , Bo = 0, fz,Ilf(tj) = P$,; 

The arbitrary constant which does not influence the stress distribution is discarded in 

(5.2), ti is the affix of a point of the. j-th contour, L,Qj are the boundary values of 

the operators L, (q = 0, 1, . . ., ‘d), which are presented in [ll]. 
We have correspondingly in the bending problem (Dli are real and D,j are imaginary 

constants) 
- - 

XCP (tj) + tj’P’ (tj) -t 9 (tj) - ~zrn’~” (tj) - XL j (Bmy G> - 

i Dljtj + D,j = - 5 [Pk, + iIf,,@ + i S P&&j) dtj 

sj 9 

8~5 Im #(tj) + X2, j (B,, Cp) + DQ = ( PLcd+ (m = I, 2, . ..I 

X,,j(B,, Cp) = ~(~(-l)~“(~~-~~)~~~-~~~j + +(F) t,,j], 

3 

Bm + i I(s,,lo*j + GnpLonj) Cp + rGp 1 ihjCp dsj]} Rj daj 
p=1 9 

& j (Bmt Cp) = (-I)*+' q b,-L,,,B,,, + i r,,p 1 LlajCp (IS~ 
p=l ‘j 

x = - (3 i-y)l(l -y), Xzrn = 12h2p4[1 - 2/(6,3$] 
l- 

sin6,-s, ,Ydc_ 2 (-l)m+l 

(6,-so)a 

1 - 
~0s &,-so &jc = 2h (--‘)” 

(8,-so)2 

After having determined F, Bk, C, , the state of stress and strain at an arbitrary 

point of the plate is found from (1.5). 
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